
PAC-MDP Learning with Knowledge-based Admissible
Models

Marek Grześ and Daniel Kudenko
Department of Computer Science, University of York

Heslington, YO10 5DD York, UK
{grzes, kudenko}@cs.york.ac.uk

ABSTRACT
PAC-MDP algorithms approach the exploration-exploitation prob-
lem of reinforcement learning agents in an effective way which
guarantees that with high probability, the algorithm performs near
optimally for all but a polynomial number of steps. The perfor-
mance of these algorithms can be further improved by incorporat-
ing domain knowledge to guide their learning process. In this pa-
per we propose a framework to use partial knowledge about effects
of actions in a theoretically well-founded way. Empirical evalu-
ation shows that our proposed method is more efficient than re-
ward shaping which represents an alternative approach to incorpo-
rate background knowledge. Our solution is also very competitive
when compared with the Bayesian Exploration Bonus (BEB) al-
gorithm. BEB is not PAC-MDP, however it can exploit domain
knowledge via informative priors. We show how to use the same
kind of knowledge in the PAC-MDP framework in a way which
preserves all theoretical guarantees of PAC-MDP learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial Intellig-
ence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Theory

Keywords
Domain knowledge, Heuristics, Reinforcement learning

1 INTRODUCTION
Reinforcement learning represents a natural approach to implement-
ing learning capability in autonomous agents and multi-agent sys-
tems. One of the key research challenges in the area of reinforce-
ment learning (RL) is how to balance the exploration-exploitation
tradeoff. In RL, learning and acting are intertwined and the ex-
ploration strategy has an immense impact on the learning speed
(often also on the quality of the final solution) and the data which
is provided for learning. This paper introduces knowledge-based
extensions to the class of PAC-MDP RL methods (PAC stands for
Probably Approximately Correct) and shows theoretical guarantees
that proposed modifications do not violate theoretical assumptions

Cite as: PAC-MDP Learning with Knowledge-based Admissible Mod-
els, Marek Grześ and Daniel Kudenko, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of PAC-MDP learning.

One of the best approaches to exploration in RL, which has good
theoretical properties, is the so called PAC-MDP approach. State-
of-the-art examples of this idea are E3 [12] and Rmax [7]. This
approach defines the exploration strategy which guarantees that
with high probability the algorithm performs near optimally for all
but a polynomial number of time steps (i.e., polynomial in the rel-
evant parameters of the underlying process).

Most of RL research has focused on the situation when knowl-
edge about the mathematical model of the underlying process is
very limited. This is however not always the case in practical ap-
plications where some domain knowledge may exist. For exam-
ple, Poupart et al. [15] indicate that some knowledge can be easily
available in navigation scenarios. They also give a concrete exam-
ple from the area of assistive technology where, in the RL-based
hand-washing device, the transition dynamics are known except be-
haviour probabilities of people with dementia who use the system
[6]. In this paper, the use of such partial knowledge about actions
of the underlying controlled process is considered to improve the
performance of PAC-MDP learning. This is only partial knowledge
because it is not sufficient to design the analytical model of the un-
derlying process and (reinforcement) learning is still necessary to
solve the problem. The resulting approach is shown to preserve
theoretical properties of PAC-MDP learning.

Bayesian techniques can be naturally enhanced with background
knowledge through informative priors. A relevant Bayesian ap-
proach to the problem of exploration in RL has been recently intro-
duced in [13]. This algorithm applies slightly greedier exploitation
than the one which is in PAC-MDP algorithms. This may lead to
improvements in some practical situations, however this greedier
exploitation makes it not PAC-MDP (see proof in [13]). In this
paper, we want to show that knowledge which in Bayesian ap-
proaches can be used to define informative priors can be also used
in the PAC-MDP framework in a relatively straightforward way and
yields a very good empirical improvement of the state-of-the-art
algorithms. This allows for the use of background knowledge, ob-
taining an algorithm which is competitive with the Bayesian ap-
proach, and most importantly is still PAC-MDP. The lack of such
techniques was one of the points of criticism against PAC-MDP
algorithms in [13].

2 MARKOV DECISION PROCESSES AND
REINFORCEMENT LEARNING

The underlying mathematical model of the RL methodology is the
Markov Decision Process (MDP). An MDP is defined as a tuple
(S, A, T, R, γ), where s ∈ S is the state space, a ∈ A is the ac-
tion space, T (s, a, s′) is the probability that action a when exe-
cuted in state s will lead to state s′, R(s, a, s′) is the immediate

349

349-356

reward received when action a taken in state s results in a transi-
tion to state s′, and γ is the discount factor which determines how
the long-term reward is calculated from immediate rewards [16].
The problem of solving an MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated reward.
A Bellman equation defines optimality conditions for the situation
when the environment dynamics (i.e., transition probabilities and a
reward function) are known. In such a case the problem of finding
the policy becomes a planning problem which can be solved using
iterative approaches like policy and value iteration [3]. These algo-
rithms take (S, A, T, R, γ) as an input and return a policy which de-
termines which action should be taken in each state so that the long
term reward is maximised. In algorithms which represent the pol-
icy via the value function V (s) or Q(s, a), such a long term reward
is expressed explicitly through V (s) or Q(s, a), where Q(s, a) re-
flects the expected long term reward when action a is executed in
state s.

The policy and value iteration methods require access to an ex-
plicit, mathematical model of the environment, that is, transition
probabilities, T , and the reward function, R, of the controlled pro-
cess. When such a model is not available, there is a need for algo-
rithms which can learn from experience. Algorithms which learn
the policy from the simulation in the absence of the MDP model
are known as reinforcement learning [20, 4]. In many practical sit-
uations, even if an explicit, mathematical model of the MDP cannot
be constructed, the system can be simulated either directly or via a
generative model (it is often easier to build a generative mathemat-
ical model than an explicit model of system dynamics [21]).

The first approach to RL is to estimate the missing model of the
environment using, e.g., statistical techniques. The repeated sim-
ulation is used to approximate or average the model. Once such
an estimation of the model is available, standard techniques for
solving MDPs, like policy and value iteration, are again applica-
ble. This approach is known as model-based RL [19]. This paper
investigates a special type of model-based RL which is known as
PAC-MDP learning.

An alternative approach to RL which is not considered in this
paper does not attempt to estimate the model of the environment,
and because of that is called model-free RL. Algorithms of this type
directly estimate the value function or a policy [14] from repeated
simulation. The standard examples of this approach constitute Q-
learning and SARSA algorithms [20].

3 PAC-MDP ALGORITHMS
PAC-MDP learning represents one of the approaches to exploration
in RL. Such algorithms are based on the technique known as opti-
mism in the face of uncertainty [12, 7]. Like in standard model-
based learning, the dynamics of the underlying MDP are estimated
from data. If a certain state-action pair has been experienced enough
times (parameter m), then the Hoeffding bound ensures that the es-
timated dynamics are close to the true values. Let p be the prob-
ability of success in the Binomial distribution, and p̂ its empiri-
cal estimate. The Hoeffding bound shows that the probability of
|p̂ − p| > ε for some ε is bounded by exp(−2mε2) where m
is the number of trials used to estimate p̂ [11]. It means that for
a given value of ε and desired probability, it is possible to deter-
mine analytically the value of the number of required trials, m.
The optimism under uncertainty plays a crucial role when dealing
with state-action pairs which have not been experienced m times.
For such pairs, the algorithm assumes the highest possible value
of their Q-values. State-action pairs for which n(s, a) < m are
named unknown and known when n(s, a) ≥ m where n(s, a) is
the number of times the state-action pair was experienced. When a

new state action pair becomes known, the existing approximation,
M̂ , of the true model, M∗, is used to compute the corresponding
optimal policy for M̂ which when executed will encourage the al-
gorithm to try unknown actions and learn their dynamics. Such an
exploration strategy guarantees that with high probability the algo-
rithm performs near optimally for all but a polynomial number of
time steps (i.e., polynomial in the relevant parameters of the under-
lying MDP).

The precise implementation of this idea is different in existing
algorithms. One of the differences comes from the fact how the
planning step is implemented. The general equation for performing
value iteration for computing the policy, π̂, for the model M̂ can be
as follows:

Q̂(s, a) = R̂(s, a) + B(s, a) + γ
∑

s′
T̂ (s, a, s′)max

a′ Q̂(s′, a′),

(1)
where B(s, a) is an algorithm specific exploration bonus. In the
Rmax algorithm, B(s, a) = 0 for all state-action pairs. In the
Model Based Interval Estimation with Exploration Bonus (MBIE-
EB) algorithm, which is also PAC-MDP, B(s, a) = β/

√
n(s, a)

where β is a parameter [18].

The proofs and theoretical analysis of PAC-MDP algorithms can
be found in the relevant literature [10, 18]. In our analysis one
specific property of such algorithms is advocated, i.e., the optimism
under uncertainty which requires that inequality V̂ (s) ≥ V ∗(s) is
always satisfied during learning, where V ∗(s) is the optimal value
function which corresponds to the true MDP model M∗.

4 NEAR BAYESIAN LEARNING
A relevant algorithm which tackles the exploration problem in a
way which originates from optimism in the face of uncertainty has
been recently proposed in [13]. The Bayesian Exploration Bonus
(BEB) algorithm implements computationally tractable approxi-
mation of the Bayesian exploration. An important fact from our
point of view is that this algorithm differs from the PAC-MDP al-
gorithm mainly in a way the exploration bonus, B(s, a), is com-
puted. In the BEB algorithm B(s, a) = β/(1 + n(s, a)). Because
n increases faster than

√
n, it has been proven [13] that BEB is not

PAC-MDP. The exploration bonus decays too fast in BEB and does
not allow for enough exploration to satisfy the PAC-MDP require-
ments. Thus, BEB is not guaranteed to converge to the optimal
solution. A useful property of the Bayesian approach is however
the fact that it can use domain knowledge in a straightforward way
through informative priors. The issue of using such knowledge in
the PAC-MDP framework has not been analysed and was consid-
ered to be its weakness [13]. In our work we are investigating how
to use the same knowledge in PAC-MDP algorithms.

5 DOMAIN KNOWLEDGE AND ADMISSI-
BLE MODELS

The standard scenario when RL is applicable is the situation when
dynamics of the controlled stochastic decision process are not avail-
able. Actions of such a process can be formally specified with the
use of the Probabilistic Planning Domain Description Language
(PPDDL) [23]. Each action a is specified in this notation by defin-
ing the probability, pi, of each probabilistic effect, ei, in the fol-
lowing way:

(a p1 e1 ... pn en).

When this notation is used to describe the probabilistic planning
problem in which the entire model is known beforehand, all pi and
ei have to be specified for all actions. In the standard RL scenario,

350

neither pi nor ei are known. However, it is often the case, that
even if the entire model is not available, some elements can be de-
termined beforehand (see reference to [6, 15] in Section 1). This
paper aims at improving PAC-MDP learning when partial action
knowledge is available. Before going into details on what kind of
knowledge will be considered, the definition bellow introduces the
notion of admissible MDP models which will determine theoretical
requirements on application of this knowledge.

DEFINITION 1. A model M̂ is admissible iff the corresponding
value function, V̂ , satisfies inequality V̂ (s) ≥ V ∗(s), that is, V̂ (s)
is admissible.

An initial model, M̂ , has to be admissible in order to preserve
PAC-MDP properties when used with existing algorithms which
are PAC-MDP [7, 18].

5.1 Optimistic Determinization

In this section we are dealing with RL problems for which all pos-
sible outcomes, ei, of each action, a ∈ A, can be determined by
the designer of the system whereas probabilities of outcomes, pi,
still remain unknown as in the classical RL scenario (such a situa-
tion exists, e.g., in the area of assistive technology [6, 15]). Under
this condition, learning from simulation is still one of the potential
solutions and RL is applicable to solve sequential decision making
problems of this kind. The question now is how to use PAC-MDP
algorithms with such knowledge about the possible effects of ac-
tions. Our solution is motivated by probabilistic planners which
apply determinization of stochastic domains [5, 22]. One of the ap-
proaches in [22] which yields an admissible deterministic model is
based on all-outcomes determinization (AO). In this case, the deter-
minization process creates a new deterministic action ad ∈ Ad(a)
for each possible effect, ei, of a given action a. The new set of de-
terministic actions replaces the original action. The obtained model
is in this case admissible with regard to the original probabilistic
one. When this type of determinization is applied in the FF-Replan
algorithm [22], probabilities of action outcomes are ignored. In our
case this situation is ideal, since we do not have those probabilities
in our RL settings anyway. The fact that the AO model is admis-
sible can be easily proven in the same manner as Lemma 6 in [18]
proves that models with the upper bound of the estimated interval
guarantee admissibility of the value function with high probabil-
ity. The proof for the case with the AO model is similar and proves
that the corresponding value function is admissible with probability
one.

LEMMA 1. For any state s and action a, the condition Q̂(s, a)

≥ Q∗(s, a) is satisfied after value iteration on the MDP M̂ which
is obtained from AO knowledge.

PROOF. Value iteration solves the MDP M̂ defined according
to AO knowledge. We prove the claim by induction on the num-
ber of steps of value iteration which is stopped after finite number
of iterations. For the base case, assume that the Q values are ini-
tialised to Rmax when γ = 1 or Rmax/(1 − γ) otherwise, for
all s. Now, for the induction, suppose that the claim holds for the
current value function Q̂(s, a). By assumption, the reward R(s, a)

is known exactly and T̂ (s, a, s′) = T̂ (s, ad ∈ Ad(a), s′) = 1

and T̂ (s, a, s′) = 0 only when T (s, a, s′) = 0 for sure (according
to AO knowledge). The term Q(s′, a′) on the right-hand side of
Equation 1 is the result of the previous iteration and is used to com-
pute the new Q-value Q̂(s, a) on the left-hand side of the equation.

By our assumption we know R(s, a) exactly and
∑

s′
T̂ (s, a, s′)max

a′ Q̂(s′, a′) = max
ad

[T (s, ad, s′)max
a′ Q̂(s′, a′)]

= max
ad

max
a′ Q̂(s′, a′) ≥

∑

s′
T (s, a, s′)max

a′ Q̂(s′, a′)

≥
∑

s′
T (s, a, s′)max

a′ Q∗(s′, a′)

The first step is from the definition how to use ad to determine val-
ues of a. The second and the third steps follow from the assumption
that T̂ (s, a, s′) = 1 ≥ maxs′ T (s, a, s′) or T̂ (s, a, s′) = 0 only
when T (s, a, s′) = 0 for sure, and the fourth from the induction
assumption.

Normally, probabilistic effects reduce the value function via tran-
sitions to lower value states and AO determinization leads to higher
values in such situations because only the state with the highest
value (which is achieved with probability 1.0 in the modified model)
is used in the Bellman update.

5.2 Free Space Assumption
The free space assumption (FSA) is an approach to define an ini-
tial model of the environment which assumes that all transitions in
the environment are possible (in robotic navigation environments
it would assume, e.g., that there are no walls between all adjacent
states or, in the case of the hand washing device of Boger et al. [6],
the person with dementia always behaves like a rational healthy
person), and that all actions are deterministic and always lead to
a corresponding expected state [17]. In the PPDDL notation, it
would mean that a real action a is replaced by outcome ei for which
ei = arg maxei pi, whereas all pi may stay unknown. The best
outcome selected in this way may fail in the real environment (with
pi = 0) however by our assumption other outcomes of this action
have their highest pi in a different action. Thus, without much loss
of generality and for the sake of theoretical properties of our so-
lution, we require that for each possible outcome which does not
correspond to the most expected outcome of a given action, there
is another action which has this outcome as the most expected one.
This requirement is necessary to guarantee the admissibility of such
a model because all outcomes have to be tested during learning (un-
less they are blocked). In the hypothetical robotic environment, the
formulation of the FSA model would mean, e.g., that an action
move forward, always moves the robot form a given state to the
state in front of the robot, ignoring any existing walls and proba-
bilistic effects of actions like, e.g., slippery surface which would
slow down robot’s movement or change the direction of its motion.

The fact that the FSA model is admissible with probability one
can be also proved in a similar way as Lemma 1. Admissibility of
V̂ (s) = maxa Q̂(s, a) guarantees optimistic behaviour when the
highest Q-value is used greedily.

LEMMA 2. For any state s and action a, the condition V̂ (s) ≥
V ∗(s) is satisfied after value iteration on the MDP M̂ which is
obtained from FSA knowledge.

PROOF. Value iteration solves the MDP M̂ defined according
to FSA knowledge. We prove the claim by induction on the num-
ber of steps of value iteration which is stopped after finite number
of iterations. For the base case, assume that the Q values are ini-
tialised to Rmax when γ = 1 or Rmax/(1 − γ) otherwise, for
all s. Now, for the induction, suppose that the claim holds for the
current value function V̂ (s). By assumption, the reward R(s, a) is

known exactly and T̂ (s, aFSA, s′) = 1 ≥ maxs′ T (s, a, s′). If

351

T (s, aFSA, s′) = 0, then another effect is better which is FSA of
another action, so another action will be better for such an effect.

Equation 1 can be expressed also in terms of the value function
V. The term V̂ (s′) on the right-hand side of such an equation is
the result of the previous iteration and is used to compute the new
V-value V̂ (s) on the left-hand side of the equation. By our assump-
tion we know R(s, a) exactly and

max
a

[γ
∑

s′
T̂ (s, a, s′)V̂ (s′)] = max

a
[γT̂ (s, aFSA, s′)V̂ (s′)]

= max
a

[γV̂ (s′)] ≥ max
a

[γ
∑

s′
T (s, a, s′)V̂ (s′)]

≥ max
a

[γ
∑

s′
T (s, a, s′)V ∗(s′)] ≥ V ∗(s)

The first step removes summation because each FSA action of a
given action a is deterministic. The second step follows from the
property T̂ (s, a, s′FSA) = 1, the third from maxs′ T (s, a, s′) ≤ 1,
and the fourth is from the induction assumption.

Informally, the value function computed with the FSA model is
always at least as high as the true value because the FSA model
will utilise shorter optimistic paths (shorter because of unblocked
transitions in the FSA model) and assume that corresponding tran-
sitions have always probability 1 (in the real model pi ≤ 1).

5.3 Maximal Probability

Two previous sections rely on knowledge about ei in the PPDDL
specification without information about exact values of probabili-
ties pi. Useful information may be available however in the form of
� = max pi, where max is over the entire state-action space. So,
� represents the maximal possible pi which can occur in a given
MDP. The value of � is useful when � < 1 as it can be used, e.g.,
for more accurate evaluation of the admissible potential function
for reward shaping in PAC-MDP algorithms [1]. In our analysis it
will be shown how to use knowledge about � in our algorithm and
how to enhance existing algorithms with which we are comparing
our solution in order to obtain more fair comparison and gain better
insight into the problem.

There is one more noteworthy issue about domain knowledge
in RL. One, well established existing way of incorporating do-
main knowledge into RL is reward shaping [1]. It requires how-
ever knowledge about a sufficiently accurate admissible heuristic
in order to preserve PAC-MDP properties of the algorithm. The
problem is that in many practical applications it is difficult to define
such a heuristic manually, which is the case in domains with sym-
bolic PPDDL-like representations. The use of knowledge which is
discussed in this section aims also at dealing with situations when
such heuristics cannot be designed. The aim is to use knowledge
from this section in an alternative way to reward shaping which is
not applicable when there is no admissible heuristic. For better un-
derstanding of the problem, our solution will be compared with the
reward shaping technique on a domain where the required heuris-
tics can be easily defined.

The main contribution of the paper is a method to apply AO
(Section 5.1) and FSA (Section 5.2) knowledge in PAC-MDP al-
gorithms while preserving the PAC-MDP property. We are also
showing how to effectively use knowledge about � in various RL
algorithms.

Admissible Model Estimated Model

n(s, a) < m �
n(s, a) ≥ m �

Table 1: The use of knowledge-based admissible models.

6 PAC-MDP LEARNING WITH ADMISSI-
BLE MODELS

The extension to PAC-MDP learning which is proposed in this sec-
tion can be applied to any PAC-MDP algorithm. In this paper we
are focusing on the Rmax [7] and MBIE-EB [18] algorithms. These
algorithms apply the standard procedure of PAC-MDP learning,
that is, model estimation, optimism in the face of uncertainty when
dealing with unknown state-action pairs and planning according to
Equation 1. Our modification is associated mainly with how the
process of estimating the MDP model is handled. The use of the
AO model requires also specification on how actions are selected
for acting and how updates in Equation 1 are performed when AO
actions are in the model.

The special treatment of the model used during learning is re-
quired because background knowledge needs to be incorporated. In
standard Rmax learning, one can distinguish two stages of learning
the dynamics of a particular state-action pair (s, a). Initially, when
there are no previous executions of (s, a) or when the number of
executions does not exceed the value of m, optimism under uncer-
tainty is applied. The second stage is about (s, a) pairs which have
been executed at least m times. The use of background knowledge
which is considered in this paper improves the way unknown state-
action pairs are dealt with (the first stage). Instead of using stan-
dard optimism under uncertainty which uniformly rewards each
state-action pair with the analytically highest value function, we are
proposing using domain knowledge to deal with this particular de-
tail of PAC-MDP learning in a more informative way. The solution
which we propose is based on combining two MDP models dur-
ing learning and using them to estimate one Q-function. The first
model is the knowledge-based admissible model which can be de-
signed before the learning process is executed. The second model
is the standard model used for estimating transition probabilities in
PAC-MDP algorithms. The key idea is to use the knowledge-based
model for all state-action pairs which are still not known and the
true estimation from experience for all state-action pairs for which
n(s, a) ≥ m. This procedure is summarised in Table 1. It is worth
reminding here that m = 1 in MBIE-EB. Summarising our idea
and explaining Table 1, our approach is to always use 1) either
the knowledge-based model (AO or FSA) for unknown state-action
pairs, or 2) the estimated model for known state-action pairs (i.e.,
those for which n(s, a) ≥ m). Because both these models are ad-
missible, the overall model will be also admissible and it does not
violate properties of PAC-MDP learning. The description bellow
explains how to implement this idea with AO and FSA knowledge
respectively.

6.1 The AO Model

The application of the AO model in the general approach presented
above requires some specific changes. The first modification is that
the Q-table has to contain all real actions and all AO actions for
each state. Q-values of real actions and their AO determinizations
are used exclusively for both planning and acting (according to Ta-
ble 1). The second issue concerns the management of actions in
the model. Initially the AO model contains each separate action
corresponding to every outcome of each real action. When a cor-
responding real action becomes known during learning in the es-

352

timated model, every AO action which corresponds to the learned
action is removed from the model (unless there are other unknown
real actions which share a given outcome). The second issue is the
planning part of the algorithm with the AO model. When value it-
eration is performed according to Equation 1, real actions are used
in the evaluation in the right part of this equation. The AO model
is however composed also of actions obtained from determiniza-
tion. Each real action a has corresponding set of deterministic ac-
tions ad ∈ Ad(a). Our solution to planning with the AO model, is
to determine the state-action value of the unknown action a using
Q(s, a) = maxad∈Ad(s) Q(s, ad). Each Q(s, a) of a real action is
equal to maximal Q(s, ad) of all its determinizations, ad ∈ Ad(a).
A similar approach is necessary also for selecting the best action
to execute. When the highest Q-value is due to AO action ad, the
real action a for which ad ∈ Ad(a) is executed (ties are broken
randomly).

6.2 The FSA Model

The application of the FSA model requires less modifications. The
handling of the model is easier, because there is exactly one ac-
tion in the FSA model which corresponds to the real action. Thus,
the computation of Q-values does not require any modifications as
well as the selection of actions to execute, and these elements may
remain unchanged. The handling of the FSA model can be en-
capsulated entirely in procedures for learning and representing the
overall model. Q-table represents values for real actions only and
FSA actions are used until a corresponding real action becomes
known in the estimated model.

6.3 Maximal Probability Knowledge

Knowledge about the maximal probability, �, can be used both with
AO and FSA models. By default, these two models are determin-
istic and the blocked transitions are not only assumed be open, but
also they can be successful with probability 1. When the value of
� is known, these models can be made more accurate while their
admissibility will be preserved. The information about � can be
incorporated via the modification of the reward, r, in the model,
which becomes r = r/� when r < 0 and r = r� when r > 0.
This modification is performed for updates of all non-real actions.
A similar trick was applied in [1] for more accurate evaluation of
the potential function for reward shaping where it was shown that
it leads to an optimistic value function. This knowledge will be
also incorporated into other algorithms for a fair comparison in the
experimental section.

7 EXPERIMENTAL VALIDATION
The proposed technique to incorporate background knowledge into
the considered family of RL algorithms was evaluated empirically
on the navigation maze task that is shown in Figure 1. Because
our aim was to compare our approach with a range of relevant al-
gorithms, in particular with reward shaping which represents al-
ternative methods for knowledge incorporation, a scaled up (from
15 × 15 to 25 × 25 states) version of the domain from [1], where
reward shaping for Rmax was proposed, is used. It is a stochastic
domain for which relatively accurate heuristics for potential-based
reward shaping can be manually designed. Each action can result
in its expected outcome with probability 0.8, and slip into one of
two perpendicular directions with probability 0.1 for each of these
directions. The reward of -1 is given for the execution of each ac-
tion. The start state is marked with S. Blocked transitions (walls)
between states are marked as solid lines between corresponding
states. The RL agent has to learn the highest reward path from the
start state S to the goal state G without knowing in advance tran-

S

G

Figure 1: The stochastic navigation maze domain.

sition probabilities of the environment. Without much loss of gen-
erality the reward model is assumed be known to the agent, which
is commonly assumed in the relevant literature [1]. The MDP dis-
count factor γ is 1 in this task.

Experiments were conducted on a number of algorithms. The
details of their settings and parameters are as follows:

• Rmax: The Rmax algorithm with m = 5. The versions of this
algorithm with AO, Rmax-AO, and FSA, Rmax-FSA, models
comprise the major contribution of this paper.

• Rmax with reward shaping [1]: The Manhattan, RS(Manhattan),
and straight line, RS(Line), heuristics are used. The potential
function was evaluated as Φ(s) = rs × h(s)/� + rg , where
rs ≤ 0 is the step reward, h(s) is the heuristic estimation of
the distance from state s to the goal G, and rg the reward given
when the goal state is reached. The Manhattan heuristic, which is
more accurate, was evaluated also with AO and FSA knowledge
in the following way: Instead of using uniform optimistic values
for Q-values of unknown state-action pairs, with the use of AO
and FSA knowledge they can be assigned values which differ
within a given state and are more informative. Thus, with AO
knowledge Q(s, a) = Vmax + maxad∈A(a)F (s, ad, s′), where
ad ∈ A(a) are all determinizations of action a, and with FSA
knowledge Q(s, a) = Vmax + F (s, aFSA, s′), where aFSA is
the FSA action of a. Algorithms, Rmax-AO and Rmax-FSA,
which comprise the major contribution of this paper use the same
knowledge, and for fair comparison reward shaping was also en-
hanced with this knowledge.

• MBIE-EB [18]: Before evaluating, this algorithm was tuned for
optimal values of the β parameter and the best value was selected
for comparisons (such a methodology was also used in [13, 18]).
This parameter, β, was evaluated for each configuration sepa-
rately. This algorithm is also evaluated with AO, MBIE-EB-AO,
and FSA, MBIE-EB-FSA, knowledge-based models as proposed
in this paper. The algorithm was also tested against one addi-
tional improvement which we propose in this paper. In particu-
lar, the use of the bonus, B(s, a), can be discarded once the pair
has been visited enough times. In our case it was mB = 5. All
parameter tuning experiments were performed with the standard
version of MBIE and with mB = 5 and for each case the best
configuration was selected for comparisons.

• BEB [13]: As in the previous case, the β and the mB parame-
ters were tuned in the same way. Additionally for fair compar-
isons with knowledge-based approaches this algorithm was en-

353

hanced with informative priors based on the AO model knowl-
edge, BEB-AO, and the FSA model knowledge, BEB-FSA. In
the first case, n(s, a) = 1 for all effects of action a, and n(s, a) =
3 when FSA knowledge is available.

• Greedy Optimistic (GO): This algorithm when used without do-
main specific knowledge corresponds to BEB and MBIE with
β = 0. It can be also considered as a special case of Asyn-
chronous Real Time Dynamic Programming (ARTDP) when used
with greedy optimistic exploration [2]. This is not a PAC-MDP
algorithm. In our experiments GO-AO (GO-FSA) corresponds
to the BEB version of this algorithm with AO (FSA) knowledge.

All algorithms for which knowledge about � is relevant were
tested with and without this knowledge. When � is known, its value
is 0.8 in our case (because it is the highest possible pi in the tested
domain), otherwise its default value of 1 is used. In all graphs all
evaluations were computed for 10 runs of all algorithms. The cu-
mulative score of each algorithm is reported as a function of the
number of learning episodes. The error bars of the standard error
of the mean (SEM) are also presented [8].

8 RESULTS
The goal of the first series of experiments is to compare our Rmax-
based approaches (i.e., Rmax-AO and Rmax-FSA) with basic Rmax
and related reward shaping algorithms when they use the same
knowledge. Rmax is the most ‘cautious’ PAC-MDP algorithm in
its exploration strategy and our proposed technique should be es-
pecially suitable for Rmax. Figure 2 shows results with AO knowl-
edge and � = 1. The standard Rmax is the slowest to learn. Reward
shaping obtains better learning ratio which is further improved by
a more accurate heuristic in RS(Manhattan). RS(Manhattan)-AO
is better initially however it does not yield better results than pure
RS(Manhattan). This is due to the fact that AO knowledge does not
give almost any differentiation of initial Q-values in this case. Our
approach, Rmax-AO, showed the best performance. The fact that
its performance is better than learning with reward shaping can be
explained as follows: In the case of informative models (AO in this
experiment and FSA bellow) the knowledge is injected into our
Rmax-AO algorithm starting from the very early stages of learn-
ing when all state-action pairs are still unknown. Reward shaping
yields improvements only when planning takes place, that is, the
improvement has an impact only on those state-action pairs which
are known. Figure 3 shows the same experiment with � = 0.8. Re-
sults of all knowledge-based algorithms are better than in Figure 2
and Rmax-AO is still the best. RS(Manhattan)-AO showed slightly
better initial learning than RS(Manhattan).

Results with FSA knowledge are shown in Figures 4 and 5. The
improvement of the tested algorithms is similar as in the case of
AO knowledge. This time however the reward shaping with FSA
knowledge, RS(Manhattan)-FSA, is much better than pure reward
shaping RS(Manhattan). In this case, the FSA knowledge yields
very good differentiation of initial Q-values, because only one out-
come for each action is considered and in effect in most cases there
is exactly one state-action pair with max Q(s, a) in a given state.
The use of � = 0.8 led to further improvement of RS(Manhattan).
Though other algorithms improve with the use of FSA knowledge,
our Rmax-FSA algorithm was the most efficient in all cases.

A crucial outcome of the experiments discussed so far is the en-
couraging performance of our Rmax-based technique (Rmax-AO
and Rmax-FSA). The overall advantage of the Rmax algorithm in
general is that there is only one parameter m and the setting of this
parameter is rather straightforward: the higher value of m the more
accurate the estimated model is - where this accuracy is formally

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

Rmax-AO
RS(Manhattan)-AO

RS(Manhattan)
RS(Line)

Rmax

Figure 2: AO knowledge and � = 1.

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

Rmax-AO
RS(Manhattan)-AO

RS(Manhattan)
RS(Line)

Rmax

Figure 3: AO knowledge and � = 0.8.

specified by the Hoeffding bound introduced in Section 3. In Rmax
the planning step is also performed at easily identified milestones
(i.e., after a new state-action pair becomes known) whereas MBIE
and BEB, which are evaluated bellow, require constant replanning.
In the presented results, the Rmax algorithm worked very well with
all kinds of knowledge, and reached the same best asymptotic per-
formance in the long term. Obtained results were stable and appro-
priately improved by provided knowledge.

Our technique introduced in this paper can be also applied to
the MBIE-EB algorithm. The next series of experiments is to com-
pare the performance of Rmax and MBIE-EB when these two algo-
rithms apply our technique to use knowledge and to compare them
with the BEB algorithm. MBIE-EB and BEB are relatively new al-
gorithms and there are no systematic evaluations and comparisons
between these two approaches nor against Rmax. Thus, before do-
ing a final analysis of these algorithms with our extension to in-
corporate domain knowledge, we are evaluating the performance
of basic Rmax, MBIE-EB and BEB on our test domain. With the
best parameter configurations for BEB (β = 0.3 and mB = 5) and
MBIE-EB (β = 0.4 and mB = 5) these two algorithms learned
significantly faster than Rmax (BEB faster then MBIE-EB but the
difference was not statistically significant), but were not able to
reach the same asymptotic convergence as Rmax. The GO algo-
rithm, though performing well initially, obtained the worst asymp-

354

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

Rmax-FSA
RS(Manhattan)-FSA

RS(Manhattan)
RS(Line)

Rmax

Figure 4: FSA knowledge and � = 1.

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

Rmax-FSA
RS(Manhattan)-FSA

RS(Manhattan)
RS(Line)

Rmax

Figure 5: FSA knowledge and � = 0.8.

totic performance. In comparisons in [13] both BEB and MBIE-EB
do not converge to the optimum as well, but there are no results on
Rmax in that comparison. Our results indicate that Rmax is very
competitive in terms of finding the optimal solution.

Figures 6 and 7 present the target comparison of BEB, MBIE-
EB, GO and Rmax algorithms when they have access to the same
knowledge, i.e., AO or FSA knowledge. Results on basic Rmax
is also included for reference. As already mentioned, AO knowl-
edge is generally weaker than FSA knowledge because it leads to
more optimistic and thus less informative MDP models. This fact
is reflected in the performance of Rmax-AO in Figure 6. Rmax is
the most ‘cautious’ and when using less informative knowledge it
still has to explore more than other more greedy algorithms. The
best performance was due to BEB and GO. The use of knowl-
edge allowed these two algorithms reaching the asymptotic result
as good as Rmax.When comparing all algorithms with the use of
FSA knowledge (Figure 7), this knowledge yields much more in-
formative model for the Rmax-FSA algorithm and its performance
is as good (slightly better in this experiment) as BEB and GO. The
MBIE-EB algorithm in this case as well reaches lower asymptotic
performance (we present here the results with the best configuration
of the parameters of this algorithm). These results are very promis-
ing for our extension, because the Rmax algorithm is PAC-MDP, it
is easy to tune, and it can reach the learning speed of much more

-60

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

BEB-AO β=0.3 mB=+∞
MBIE-EB-AO β=0.1 mB=5

GO-AO
Rmax-AO

Rmax

Figure 6: AO knowledge and � = 0.8.

-60

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 102

BEB-FSA β=0.3 mB=+∞
MBIE-EB-FSA β=0.08 mB=5

GO-FSA
Rmax-FSA

Rmax

Figure 7: FSA knowledge and � = 0.8.

greedy learning algorithms which are not PAC-MDP. The last claim
can be explained as follows: Due to its rigourous requirements,
Rmax has to explore more than other more greedy non-PAC-MDP
algorithms like BEB, which means that it learns slower in many
domains as is the case in our experiments. This paper shows that
a competitive performance can be obtained under all rigourous re-
quirements of Rmax when it is used with our knowledge-based ex-
tension. Another practical remark is that FSA knowledge should
be preferred over AO knowledge when our approach is used with
the Rmax algorithm.

9 CONCLUSION
Exploration-exploitation is the crucial challenge for autonomous
agents which learn from environment feedback using reinforce-
ment learning. PAC-MDP algorithms are particularly effective in
practice and interesting from an analytical point of view because
they approach the exploration-exploitation problem in a way which
guarantees that with high probability, the algorithm performs near
optimally for all but a polynomial number of steps. The perfor-
mance of these algorithms can be further improved by incorporat-
ing domain knowledge to guide the learning process. The lack of
such methods was shown to be a weak point of PAC-MDP algo-
rithms and alternative non-PAC-MDP methods were proposed and
shown to be competitive [13]. In this paper we propose a frame-

355

work to use partial knowledge about effects of actions in a theo-
retically well-founded way. The contribution of the paper can be
summarised as follows:

• With the use of a symbolic specification of the MDP action in
the PPDDL formulation, potentially available domain knowl-
edge was distinguished and it was shown how to use this knowl-
edge with PAC-MDP algorithms in a way which preserves theo-
retical properties of these algorithms.

• The empirical evaluation shows that our proposed method is more
efficient than reward shaping which represents an alternative ap-
proach to incorporate background knowledge. Reward shaping
requires an admissible heuristic which has to be designed man-
ually (e.g., in domains represented symbolically via PPDDL, it
is difficult to design such admissible heuristics). Our solution
uses only local action knowledge and can be applied when such
heuristics cannot be designed or when designed are not accurate.
Our results show that even if such heuristics exist, our approach
can be more efficient. Informally, it can be argued that our ap-
proach will be always better than reward shaping, because in our
case domain knowledge is used when state action pairs are still
unknown. Knowledge injected via reward shaping is used only
with known state-action pairs. In this comparison, our paper
gives also a good insight into the significance of different kinds
of knowledge on the learning performance of various PAC-MDP
algorithms.

• Our solution is also very competitive when compared with the
Bayesian Exploration Bonus (BEB) algorithm. BEB is not PAC-
MDP, however it can exploit domain knowledge via informative
priors. We show how to use the same kind of knowledge in the
PAC-MDP framework in a way which preserves all theoretical
guarantees of PAC-MDP learning.

• The presented results indicate also that FSA knowledge leads to
more informative admissible models and should be preferred to
AO knowledge when applied to PAC-MDP algorithms such as
Rmax.

This work was motivated by our goals of advancing further the
use of symbolic representations (e.g., PPDDL) in RL. The tech-
nique presented in this paper will be considered in our future work
on such representations. Applicability of our approach is relatively
straight-forward in domains with a PPDDL description. This repre-
sentation is behind the theoretical explanation of our solution and
exists in many practical RL/planning domains [9]. In this paper,
we focused experiments on the Maze domain because it allowed
for detailed comparison with reward shaping approaches, which
rely on admissible heuristics. For the Maze domain, we could de-
sign such heuristics and obtained detailed comparisons. PPDDL
search spaces are massively broader than those in mazes, and we
expect more significant improvements on this kind of problems in
the future work. Additionally, it is extremely difficult to design
admissible heuristics for such domains, so reward shaping cannot
guarantee PAC-MDP properties. In contrast, our solution is proven
to be PAC-MDP for the broad family of PPDDL domains.

As shown in this paper, AO and FSA knowledge displayed en-
couraging speed-up of PAC-MDP learning. This kind of knowledge
is directly based on the PPDDL representation, therefore it is easy
to acquire and understand. It would be interesting to see in future
work if different (either more general or more specific) types of do-
main knowledge would meet requirements of PAC-MDP learning.
This could be, e.g., ‘feature-based heuristics’ which indicate that
certain actions are more promising than other actions.

10 ACKNOWLEDGMENT
We would like to thank members of the RL3 group from Rutgers
University for useful discussions on PAC-MDP learning.

11 References
[1] J. Asmuth, M. L. Littman, and R. Zinkov. Potential-based

shaping in model-based reinforcement learning. In Proc. of
AAAI, 2008.

[2] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act
using real-time dynamic programming. Artificial
Intelligence, 72(1-2):81–138, 1995.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control
(2 Vol Set). Athena Scientific, 3rd ed., 2007.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[5] A. L. Blum and J. C. Langford. Probabilistic planning in the
graphplan framework. In Proc. of ECP, pages 8–12, 1998.

[6] Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and
Mihailidis, A. A decision-theoretic approach to task
assistance for persons with dementia. In Proc. of IJCAI,
pages 1293–1299, 2005.

[7] R. I. Brafman and M. Tennenholtz. R-max - a general
polynomial time algorithm for near-optimal reinforcement
learning. JMLR, pages 213–231, 2002.

[8] P. R. Cohen. Empirical methods for artificial intelligence.
MIT Press, 1995.

[9] M. Ghallab, D. Nau, and P. Traverso. Automated Planning,
Theory and Practice. Morgan Kaufmann, 2004.

[10] S. M. Kakade. On the Sample Complexity of Reinforcement
Learning. PhD thesis, Gatsby Computational Neuroscience
Unit, University College, London, 2003.

[11] M. Kearns and U. Vazirani. An Introduction to
Computational Learning Theory. The MIT Press, 1994.

[12] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. ML, pages 209–232, 2002.

[13] J. Z. Kolter and A. Ng. Near-bayesian exploration in
polynomial time. In Proc. of ICML, 2009.

[14] A. Y. Ng and M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. In In Proc. of UAI, pages
406–415, 2000.

[15] Poupart, P., Vlassis, N., Hoey, J., and Regan, K. An analytic
solution to discrete bayesian reinforcement learning. In Proc.
of ICML, pages 697–704, 2006.

[16] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1994.

[17] D. C. Rayner, K. Davison, V. Bulitko, K. Anderson, and
J. Lu. Real-time heuristic search with a priority queue. In
Proc. of IJCAI, pages 2372–2377, 2007.

[18] A. L. Strehl and M. L. Littman. An analysis of model-based
interval estimation for markov decision processes. JCSS,
74:1309–1331, 2008.

[19] R. S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming.
In Proc. of ICML, pages 216–224, 1990.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[21] G. J. Tesauro. TD-gammon, a self-teaching backgammon
program, achieves master-level play. Neural Computation,
6(2):215–219, 1994.

[22] S. W. Yoon, A. Fern, and R. Givan. Ff-replan: A baseline for
probabilistic planning. In Proc. of ICAPS, pages 352–359,
2007.

[23] H. L. S. Younes and M. L. Littman. PPDDL1.0: An
extension to PPDDL for expressing planning domains with
probabilistic effects. Techn. Rep. CMU-CS-04-162, 2004.

356

